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Foreword

The embryonic development of femtoscience stems from advances made
in the generation of ultrashort laser pulses. Beginning with mode-locking of
glass lasers in the 1960s, the development of dye lasers brought the pulse
width down from picoseconds to femtoseconds. The breakthrough in solid
state laser pulse generation provided the current reliable table-top laser
systems capable of average power of about 1 watt, and peak power density
of easily watts per square centimeter, with pulse widths in the
range of four to eight femtoseconds. Pulses with peak power density
reaching watts per square centimeter have been achieved in laboratory
settings and, more recently, pulses of sub-femtosecond duration have been
successfully generated.

As concepts and methodologies have evolved over the past two decades,
the realm of ultrafast science has become vast and exciting and has impacted
many areas of chemistry, biology and physics, and other fields such as
materials science, electrical engineering, and optical communication. In
molecular science the explosive growth of this research is for fundamental
reasons. In femtochemistry and femtobiology chemical bonds form and
break on the femtosecond time scale, and on this scale of time we can freeze
the transition states at configurations never before seen. Even for non-
reactive physical changes one is observing the most elementary of molecular
processes. On a time scale shorter than the vibrational and rotational periods
the ensemble behaves coherently as a single-molecule trajectory.

But these developments would not have been possible without the
crystallization of some key underlying concepts that were in the beginning
shrouded in fog. First was the issue of the “uncertainty principle”, which
had to be decisively clarified. Second was the question of whether one could
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sustain wave-packet motion at the atomic scale of distance. In other words,
would the de Broglie wavelength of the atom become sufficiently short to
define classical motion – “classical atoms” – and without significant
quantum spreading? This too had to be clearly demonstrated and monitored
in the course of change, not only for elementary processes in molecular
systems, but also during complex biological transformations. And, finally,
some questions about the uniqueness and generality of the approach had to
be addressed. For example, why not deduce the information from high-
resolution frequency-domain methods and then Fourier transform to obtain
the dynamics? It is surely now clear that transient species cannot be isolated
this way, and that there is no substitute for direct “real time” observations
that fully exploit the intrinsic coherence of atomic and molecular motions.

Theory has enjoyed a similar explosion in areas dealing with ab initio
electronic structures, molecular dynamics, and nonlinear spectroscopies.
There has been progress in calculating potential energy surfaces of reactive
systems, especially in their ground state. On excited-state surfaces it is now
feasible to map out regions of the surface where transition states and conical
intersections are important for the outcome of change. For dynamics, new
methods have been devised for direct viewing of the motion by formulating
the time-dependent picture, rather than solving the time-independent
Schrödinger equation and subsequently constructing a temporal picture.
Analytical theory has been advanced, using time-ordered density matrices, to
enable the design of multidimensional spectroscopy, the analogue of 2-D
(and higher) NMR spectroscopy. That the coupling between theory and
experiment is profound is evident in many of the chapters in this volume.

Other areas of studies are highlighted in this volume. The making of
femtosecond combs for precision metrology and spectroscopy, and the
advances in nonlinear and multidimensional optical techniques are two
examples of such frontiers. The ability to count optical oscillations of more
than cycles per second can potentially provide all-optical atomic clocks
with a new limit of precision. Similarly, the ability to generate sub-
femtosecond pulses pushes the limit and resolution toward new studies of
electron dynamics. Besides these advances in precision (optical cycles) and
pulse duration (pulse width) there are those concerned with the phase.
Beginning in 1980, the phase of an optical pulse has been experimentally
under control and pulses of well-defined phases etc) have been
generated and utilized in, among other applications, the control of emission
from molecules. But only recently could composite phases be prescribed
with a feedback algorithm to control the outcome of a reactive channel, as
shown in this volume. Coherent control is a frontier field stimulating
research in both theory and experiment.
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Edited by Peter Hannaford this volume is a welcomed edition to the
field as it brings together the latest in some areas of developments with an
impressive mix of new methodologies and applications. The use of
femtosecond combs for precision measurements is well covered and
coherent control is presented with demonstrations for atomic, molecular and
electronic processes. Nonlinear optical methods, including novel geometries
of photon and vibrational echoes, are described for the investigation of
molecular systems, in particular dye molecules, hydrogen-bonded networks,
semiconductor quantum dots, and biomolecules. Measurements of ultrashort
pulses, time-resolved reflection and transmission methods, and real-time
spectroscopy with sub-5-femtosecond visible pulses provide the means for
exploring new regimes and resolutions.

This book in the series on Progress in Lasers gives an exposé of some
current and exciting research areas in the technology of pulse generation and
in the applications of femtoscience.

Ahmed Zewail
California Institute of Technology
Pasadena, California
May 2004



Preface

When I was first approached to edit a volume on Femtosecond Laser
Spectroscopy in 2000, I did not anticipate that the field was about to explode,
with the announcement of a series of remarkable new developments and
advances. This volume describes these recent developments in eleven
chapters written by leading international researchers in the field. It includes
sections on:

Femtosecond optical frequency combs, which are currently
revolutionising ultrahigh precision spectroscopy and optical frequency
metrology;
Soft X-ray femtosecond laser sources, which promise to have important
applications in biomedical imaging;
Attosecond laser sources, which will provide the next generation of
sources to study ultrafast phenomena such as electron dynamics;
Novel methods for measuring and characterizing ultrashort laser pulses
and ultrashort pulses of light;
Coherent control of atomic, molecular and electron dynamics with
tailored femtosecond laser pulses;
Real-time Spectroscopy of molecular vibrations with sub-5-fs pulses; and
Multidimensional femtosecond coherent spectroscopies for studying
molecular and electron dynamics.

Indeed, it is gratifying to see that with the recent advent of attosecond laser
sources the title of this volume may soon be rendered obsolete.

I would like to thank each of the contributors for their cooperation in
preparing this volume, and Ahmed Zewail for writing the Foreword. I
appreciate the amount of work that goes into writing chapters of this type
when the authors are heavily burdened with other demands on their time. I
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feel honoured and privileged to have been associated with such an eminent
group of researchers. I also thank my co-workers in the Ultrafast
Spectroscopy group at Swinburne University of Technology – Lap Van Dao,
Martin Lowe, Craig Lincoln, Shannon Whitlock, Xiaoming Wen, Tra My
Do, Petrissa Eckle and David McDonald – for their help and encouragement
during the preparation of this volume and for critical reading of some of the
chapters. I thank Tien Kieu, Grainne Duffy and David Lau for their
assistance with the preparation of the camera-ready chapters, and Gustav
Gerber for kindly allowing the use of Figure 9-12 on the front cover of this
volume. Finally, I thank the publishers of the following journals and books
for permission to reproduce material in this volume: Applied Physics B,
Applied Physics Letters, Journal of Chemical Physics, Journal of Physics B,
Laser Spectroscopy Proceedings, Nature, Optics Express, Optics Letters,
Optical Review, Review of Scientific Instruments, Physical Review Letters,
Physical Review A, and SPIE Proceedings.

Peter Hannaford
Swinburne University of Technology
Melbourne, June 2004
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