

FEMTOSECOND LASER SPECTROSCOPY

Edited by PETER HANNAFORD

版权免责声明

本文集内容均来源于网络,版权归著作方所有。广州基座光学科技有限 公司仅做搜集整理工作,并供读者学习参考用途。在使用本文集内容时可能 造成实际或预期的损失,读者转载时破坏电子文档的完整性,或以商业盈利 目的复制和销售等行为,本公司概不承担任何责任。若原文版权方有异议, 请联系我们删除。

Femtosecond Laser Spectroscopy

 Edited by Peter Hannaford

Femtosecond Laser Spectroscopy

Springer

Contents

Co	ntril	outing authors	xi
Fo	rewo	ord	XV
Pre	face		xix
1.	Ph Pr	ase Controlled Femtosecond Lasers for Sensitive, ecise and Wide Bandwidth Nonlinear Spectroscopy	1
	<i>Jui</i> 1	Introduction to femtosecond optical frequency comb	1
	2.	Precision atomic spectroscopy – structure and dynamics	8
	3.	Molecular Spectroscopy aided by femtosecond optical frequency comb	12
	4.	I_2 hyperfine interactions, optical frequency standards and	14
	5	CIOCKS Extension of phase-coherent fs combs to the mid-IR spectral	14
	5.	region	19
	6.	Femtosecond lasers and external optical cavities	21
		References	26
2.	Su	percontinuum and High-Order Harmonics: "Extreme"	
	Co	herent Sources for Atomic Spectroscopy and Attophysics	29
	Ма	urco Bellini	
	1.	Introduction	29
	2.	High-resolution spectroscopy with ultrashort pulses	30

	3.	High-order harmonics	33
		3.1 Basic principles	33
		3.2 Phase coherence in harmonic generation	33
		3.3 Some insight into the microscopic generation process	35
		3.4 Collinear, phase-coherent, harmonic pulses	37
		3.5 Ramsey spectroscopy with high-order harmonics	39
	4.	Supercontinuum	42
		4.1 Basic principles	42
		4.2 Phase preservation in the supercontinuum generation	
		process	43
		4.3 Collinear, phase-coherent, supercontinuum pulses	44
		4.4 Multiple-beam interference from an array of super-	
		continuum sources: a spatial comb	49
	5.	Phase preservation in chirped-pulse amplification	54
	6.	Frequency combs, absolute phase control, and attosecond pulses	55
	7.	Conclusions	57
		References	57
•			
3.		le Measurement of Ultrashort Light – Simple Devices,	<u>(1</u>
	C	ompiex Puises	61
	Хu	n Gu Selcuk Akturk Aparna Shreenath Ojang Cao and	
	Ric	rk Gu, Second Thanna, Tiparna Shreenann, Qiang Guo ana	
	1.	Introduction	61
	2.	FROG and cross-correlation FROG	63
	3.	Dithered-crystal XFROG for measuring ultracomplex	00
		supercontinuum pulses	64
	4.	OPA XFROG for measuring ultraweak fluorescence	68
	5.	Extremely simple FROG device	75
	6.	Conclusions	85
		References	86
4.	Fe	mtosecond Combs for Precision Metrology	87
	S.N	N. Bagayev, V.I. Denisov, V.M. Klementyev, I.I. Korel,	
	S.A	A. Kuznetsov, V.S. Pivtsov and V.F. Zakharyash	~-
	1.	Introduction	87
	2.	The use of femtosecond comb for creation of an optical clock	89
	3.	Spectral broadening of femtosecond pulses in tapered fibres	94
	4.	Frequency stability of femtosecond comb by passage of	100
	~	temtosecond pulses through a tapered fibre	102
	5.	Conclusions	106
		Keterences	107

5.	Inf Ba	irarec sed O	Precision Precision	on Spectroscopy using Femtosecond-Laser- requency-Comb Synthesizers	109
	<i>P</i> .	De No	tale. P. (Cancio and D. Mazzotti	
	1	Evol	ution of i	metrological sources in the IR: from	
		synt	nesized fr	requency chains to fs-optical frequency combs	110
	2.	Mol	ecular tra	nsitions for IR frequency metrology	112
	3.	IR c	oherent s	ources	115
		3.1	Present	coherent sources	115
		3.2	Future I	R sources and materials	118
	4.	Exte	nding vis	sible/near-IR fs combs to the mid-IR	120
		4.1	Visible/	near-IR combs	120
		4.2	Bridgin	g the gap with difference frequency generation	
			and opti	cal parametric oscillators	122
	5.	Con	clusions a	and perspectives for IR combs	126
		Refe	rences		127
6.	Re	al-Ti	ne Spect	troscopy of Molecular Vibrations with	
	Su	b-5-F	s Visible	Pulses	133
	Та	kayos	hi Kobay	ashi	
	1.	Intro	duction		134
	2.	Exp	erimental		137
		2.1	Sample		137
		2.2	Stationa	ry absorption and Raman spectra	137
		2.3	Sub-5-f	s real-time pump-probe apparatus	139
	3.	Res	ilts and d	iscussion	144
		3.1	Real-tin	ne spectra	144
		3.2	Dynami	ics of the electronic states	146
		3.3	Two-dii	mensional real-time spectrum	148
		3.4	Dynami	ics of excitonic states	150
		3.5	Analysi	s of coherent molecular vibration	150
		3.6	Analysi	s of phase and amplitude of oscillation	152
		3.7	Exciton	-vibration interaction	153
			3.7.1	Quantum beat between different n exciton states	153
			3.7.2	Wave-packet motion on ground-state potential	
				energy surface	154
			3.7.3	Wave-packet motion on excited-state potential	
				energy surface	155
			3.7.4	Dynamic intensity borrowing	156
		3.8	Theoret	ical analysis of results	159
			3.8.1	Herzberg-Teller type wave-packet motion	159
			3.8.2	Evaluation of amount of modulated transition	

		dipole moment	161
		3.8.3 Evaluation of magnitude of the oscillator	
		strength transfer	163
	4.	Conclusions	164
		References	164
7.	Vi	brational Echo Correlation Spectroscopy: A New Probe	
	of]	Hydrogen Bond Dynamics in Water and Methanol	167
	Jok	nn B. Asbury, Tobias Steinel and M.D. Fayer	
	1.	Introduction	168
	2.	Experimental Procedures	170
	3.	Results and Discussion	174
		3.1 Hydrogen bond population dynamics in MeOD	174
		3.2 Photoproduct γ band spectral diffusion in MeOD	179
		3.3 Structural evolution in water, an overview	184
		3.4 Local structure dependent evolution in water	190
	4.	Concluding remarks	193
		References	195
8.	Sp	ectrally Resolved Two-Colour Femtosecond Photon Echoes	197
	La	p Van Dao, Craig Lincoln, Martin Lowe and Peter Hannaford	
	1.	Introduction	197
	2.	Physical Principles	199
		2.1 Bloch equation description	199
		2.2 Nonlinear optical response theory	202
		2.3 Spectrally resolved photon echoes	205
	3.	Experimental	207
	4.	Spectrally resolved photon echoes	208
		4.1 One-colour two-pulse photon echoes	208
		4.2 One-colour three-pulse photon echoes	209
		4.3 Two-colour three-pulse photon echoes	211
		4.3.1 Detection of $k_4 = -k_1 + k_2 + k_3$	211
		4.3.2 Detection of $\mathbf{k_6} = -\mathbf{k_3} + \mathbf{k_1} + \mathbf{k_2}$	216
	5.	Molecular systems	217
		5.1 Dye molecules	217
		5.2 Semiconductor materials	219
		5.2.1 Gallium nitride	219
		5.2.2 Semiconductor quantum dots	220
	_	5.3 Biological molecules	221
	6.	Summary and future directions	222
		References	223

9.	Op Dv	timal nami	Control of Atomic, Molecular and Electron	225
	Tol	hias F	Reizner, Thomas Pfeifer, Gustav Gerber	223
	Ma	tthias	Wollenhaunt and Thomas Baumert	
	1	Intro	duction	226
	1. ว	One	noremeter control on prototypes, stoms and dimers	220
	Ζ.	in th	- parameter control on prototypes, atoms and dimers	228
		11 III 2 1	Control in the northerhotive limit	220
		2.1	2.1.1 Excitation askered	229
			2.1.1 Excitation scheme	229
			2.1.2 Control via the Fannor-Kosioli-Rice scheme	232
			2.1.3 Control via simple shaped pulses	235
		2.2	Control in strong laser fields	238
			2.2.1 Coherent coupling of molecular electronic states	238
			2.2.2 Coherent coupling of atomic electronic states	
			– control beyond population transfer and	
	•		spectral interferences	241
	3.	Man	y-parameter control in the gas phase	243
		3.1	Closed-loop femtosecond pulse shaping	244
		3.2	Control of product ratios	247
		3.3	Bond-selective photochemistry	248
		3.4	Organic chemical conversion	249
		3.5	Multiple optimization goals	251
	4.	Man	y-parameter control in the liquid phase	252
		4.1	Control of metal-ligand charge-transfer excitation	253
		4.2	Control of photo-isomerization	254
	5.	Coh	erent control of electron motion	255
		5.1	Coherent transfer to free electrons	255
		5.2	Selective optimization of high-order harmonic	
			generation	258
	6.	Con	cusions	262
		Refe	erences	263
10.	Co	herer	nt Control of Atomic Dynamics with Chirped and	
	Sh	aped	Pulses	267
	Bé	atrice	Chatel and Bertrand Girard	
	1.	Intro	oduction	267
	2.	Chir	ped pulses and pulse shapers	269
	3.	Obs	ervation and control of coherent transients in one-photon	
		trans	sitions	271
		3.1	Introduction	271
		3.2	Control of transient dynamics with shaped pulses	273
		3.3	Chirped pulses in the weak field regime: observation	

└──○eabt 基座光学

			of coherent transients	273
		3.4	Control of coherent transients with simple spectral	
			shapes	277
		3.5	Control of coherent transients with simple temporal	
			shapes: temporal Fresnel lenses	279
		3.6	Strong field: saturation of coherent transients	282
		3.7	Reconstruction of wave function and laser pulse from	
		_	coherent transients	283
	4.	Cont	rol of two-photon transitions – quantum ladder climbing	285
		4.1	Weak-field two-photon transition with a non-resonant	
		4.0	intermediate state	287
		4.2	Weak-field two-photon transition with a resonant	200
		4.2	Intermediate state	290
	-	4.3 C	Adiabatic excitation of a quantum ladder	297
	э.	Conc	clusion	299
		Rele	rences	300
11	тн	nofor	t Progesses of Highly Excited Wide Can Dielectric	
11.	Th	in Fil	ms	305
	M	Mero	I Zeller and W Rudolph	505
	1	T	, 9. Dener and W. Radolph	
	- L.	Infro	oduction	305
	1. 2.	Intro Mod	duction elling of processes following fs pulse excitation	305 307
	1. 2.	Intro Mod 2.1	duction elling of processes following fs pulse excitation Microscopic model based on the Boltzmann equation	305 307 307
	1. 2.	Intro Mod 2.1	elling of processes following fs pulse excitation Microscopic model based on the Boltzmann equation 2.1.1 Photoionization	305 307 307 309
	1. 2.	Intro Mod 2.1	Aduction elling of processes following fs pulse excitation Microscopic model based on the Boltzmann equation 2.1.1 Photoionization 2.1.2 Electron-electron interaction	305 307 307 309 310
	2.	Intro Mod 2.1	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization	305 307 307 309 310 311
	1. 2.	Intro Mod 2.1	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction	305 307 307 309 310 311 312
	1. 2.	Intro Mod 2.1	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defects	305 307 307 309 310 311 312 314
	2.	Intro Mod 2.1 2.2	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdown	305 307 307 309 310 311 312 314 316
	3.	Intro Mod 2.1 2.2 Diel	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdownectric breakdown behaviour of oxide thin films	305 307 307 309 310 311 312 314 316 318
	1. 2. 3. 4.	Intro Mod 2.1 2.2 Diel Time	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdownectric breakdown behaviour of oxide thin filmse-resolved reflection and transmission studies	305 307 309 310 311 312 314 316 318 322
	 1. 2. 3. 4. 	2.2 Diel- Time 4.1	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdownectric breakdown behaviour of oxide thin filmse-resolved reflection and transmission studiesExperiments	305 307 309 310 311 312 314 316 318 322 322
	 1. 2. 3. 4. 	2.2 Diel- Time 4.1 4.2	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdownectric breakdown behaviour of oxide thin filmse-resolved reflection and transmission studiesExperimentsRetrieval of the dielectric constant	305 307 309 310 311 312 314 316 318 322 322 322
	1. 2. 3. 4.	2.2 Diel Time 4.1 4.2 4.3	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdownectric breakdown behaviour of oxide thin filmse-resolved reflection and transmission studiesExperimentsRetrieval of the dielectric constantInterpretation of the experiments	305 307 307 309 310 311 312 314 316 318 322 322 322 324
	 1. 2. 3. 4. 5. 	2.2 Diel- Time 4.1 4.2 4.3 Com	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdownectric breakdown behaviour of oxide thin filmse-resolved reflection and transmission studiesExperimentsRetrieval of the dielectric constantInterpretation of the experimentsmarison of experiment and theory	305 307 309 310 311 312 314 316 318 322 322 322 324 325
	1. 2. 3. 4. 5. 6.	2.2 Diel- Time 4.1 4.2 4.3 Com Sum	ductionelling of processes following fs pulse excitationMicroscopic model based on the Boltzmann equation2.1.1Photoionization2.1.2Electron-electron interaction2.1.3Impact ionization2.1.4Electron-phonon-photon interaction2.1.5Carrier-decay into defectsPhenomenological model of dielectric breakdownectric breakdown behaviour of oxide thin filmse-resolved reflection and transmission studiesExperimentsRetrieval of the dielectric constantInterpretation of the experimentsuparison of experiment and theorymary	305 307 309 310 311 312 314 316 318 322 322 322 324 325 327
	1. 2. 3. 4. 5. 6.	2.2 Diel- Time 4.1 4.2 4.3 Com Sum Refe	elling of processes following fs pulse excitation Microscopic model based on the Boltzmann equation 2.1.1 Photoionization 2.1.2 Electron-electron interaction 2.1.3 Impact ionization 2.1.4 Electron-phonon-photon interaction 2.1.5 Carrier-decay into defects Phenomenological model of dielectric breakdown ectric breakdown behaviour of oxide thin films e-resolved reflection and transmission studies Experiments Retrieval of the dielectric constant Interpretation of the experiments aparison of experiment and theory mary rences	305 307 309 310 311 312 314 316 318 322 322 322 324 325 327 328

Contributing Authors

Number in parentheses indicates first page of author's contribution.

S. AKTURK (61), School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

J. B. ASBURY (167), Department of Chemistry, Stanford University, Stanford, CA 94305, USA

S.N. BAGAYEV (87), Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Pr. Lavrentieva, 13/3, 630090 Novosibirsk, Russia

T. BAUMERT (225), Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany

M. BELLINI (29), Istituto Nazionale di Ottica Applicata (INOA), Largo Fermi 6, 50125, Florence, Italy

T. BRIXNER (225), Physics Department, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

P. CANCIO (109), Istituto Nazionale di Ottica Applicata (INOA), Largo Fermi 6, 50125 Florence, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy Q. CAO (61), School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

B. CHATEL (267), Laboratoire de Collisions, Agrégats et Réactivité (CNRS UMR 5589), IRSAMC, Université Paul Sabatier, 31062 Toulouse CEDEX, France

L.V. DAO (197), Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

P. DE NATALE (109), Istituto Nazionale di Ottica Applicata (INOA), Largo Fermi 6, 50125 Florence, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy

V.I. DENISOV (87), Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Pr. Lavrentieva, 13/3, 630090 Novosibirsk, Russia

M.D. FAYER (167), Department of Chemistry, Stanford University, Stanford, CA 94305, USA

G. GERBER (225), Physics Department, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

B. GIRARD (267), Laboratoire de Collisions, Agrégats et Réactivité (CNRS UMR 5589), IRSAMC, Université Paul Sabatier, 31062 Toulouse CEDEX, France

X. GU (61), School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

P. HANNAFORD (197), Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

V.M. KLEMENTYEV (87), Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Pr. Lavrentieva, 13/3, 630090 Novosibirsk, Russia

T. KOBAYASHI (133), Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan

I.I. KOREL (87), Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Pr. Lavrentieva, 13/3, 630090 Novosibirsk, Russia

S.A. KUZNETSOV (87), Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Pr. Lavrentieva, 13/3, 630090 Novosibirsk, Russia

C. LINCOLN (197), Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

M. LOWE (197), Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

D. MAZZOTTI (109), Istituto Nazionale di Ottica Applicata (INOA), Largo Fermi 6, 50125 Florence, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy

M. MERO (305), Department of Physics and Astronomy, University of New Mexico, Albuquerque NM 87131, USA

T. PFEIFER (225), Physics Department, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

V.S. PIVTSOV (87), Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Pr. Lavrentieva, 13/3, 630090 Novosibirsk, Russia

W. RUDOLPH (305), Department of Physics and Astronomy, University of New Mexico, Albuquerque NM 87131, USA

A. SHREENATH (61), School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

T. STEINEL (167), Department of Chemistry, Stanford University, Stanford, CA 94305, USA

R. TREBINO (61), School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

M. WOLLENHAUPT (225), Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany

J. YE (1), JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA

V.F. ZAKHARYASH (87), Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Pr. Lavrentieva, 13/3, 630090 Novosibirsk, Russia

J. ZELLER (305), Department of Physics and Astronomy, University of New Mexico, Albuquerque NM 87131, USA

Foreword

The embryonic development of femtoscience stems from advances made in the generation of ultrashort laser pulses. Beginning with mode-locking of glass lasers in the 1960s, the development of dye lasers brought the pulse width down from picoseconds to femtoseconds. The breakthrough in solid state laser pulse generation provided the current reliable table-top laser systems capable of average power of about 1 watt, and peak power density of easily $10^{12} - 10^{13}$ watts per square centimeter, with pulse widths in the range of four to eight femtoseconds. Pulses with peak power density reaching 10^{20} watts per square centimeter have been achieved in laboratory settings and, more recently, pulses of sub-femtosecond duration have been successfully generated.

As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. In molecular science the explosive growth of this research is for fundamental reasons. In femtochemistry and femtobiology chemical bonds form and break on the femtosecond time scale, and on this scale of time we can freeze the transition states at configurations never before seen. Even for nonreactive physical changes one is observing the most elementary of molecular processes. On a time scale shorter than the vibrational and rotational periods the ensemble behaves coherently as a single-molecule trajectory.

But these developments would not have been possible without the crystallization of some key underlying concepts that were in the beginning shrouded in fog. First was the issue of the "uncertainty principle", which had to be decisively clarified. Second was the question of whether one could

sustain wave-packet motion at the atomic scale of distance. In other words, would the de Broglie wavelength of the atom become sufficiently short to define classical motion – "classical atoms" – and without significant quantum spreading? This too had to be clearly demonstrated and monitored in the course of change, not only for elementary processes in molecular systems, but also during complex biological transformations. And, finally, some questions about the uniqueness and generality of the approach had to be addressed. For example, why not deduce the information from high-resolution frequency-domain methods and then Fourier transform to obtain the dynamics? It is surely now clear that transient species cannot be isolated this way, and that there is no substitute for direct "real time" observations that fully exploit the intrinsic coherence of atomic and molecular motions.

Theory has enjoyed a similar explosion in areas dealing with *ab initio* electronic structures, molecular dynamics, and nonlinear spectroscopies. There has been progress in calculating potential energy surfaces of reactive systems, especially in their ground state. On excited-state surfaces it is now feasible to map out regions of the surface where transition states and conical intersections are important for the outcome of change. For dynamics, new methods have been devised for direct viewing of the motion by formulating the time-dependent picture, rather than solving the time-independent Schrödinger equation and subsequently constructing a temporal picture. Analytical theory has been advanced, using time-ordered density matrices, to enable the design of multidimensional spectroscopy, the analogue of 2-D (and higher) NMR spectroscopy. That the coupling between theory and experiment is profound is evident in many of the chapters in this volume.

Other areas of studies are highlighted in this volume. The making of femtosecond combs for precision metrology and spectroscopy, and the advances in nonlinear and multidimensional optical techniques are two examples of such frontiers. The ability to count optical oscillations of more than 10¹⁵ cycles per second can potentially provide all-optical atomic clocks with a new limit of precision. Similarly, the ability to generate subfemtosecond pulses pushes the limit and resolution toward new studies of electron dynamics. Besides these advances in precision (optical cycles) and pulse duration (pulse width) there are those concerned with the phase. Beginning in 1980, the phase of an optical pulse has been experimentally under control and pulses of well-defined phases (π , $\pi/2$, etc) have been generated and utilized in, among other applications, the control of emission from molecules. But only recently could composite phases be prescribed with a feedback algorithm to control the outcome of a reactive channel, as shown in this volume. Coherent control is a frontier field stimulating research in both theory and experiment.

Edited by Peter Hannaford this volume is a welcomed edition to the field as it brings together the latest in some areas of developments with an impressive mix of new methodologies and applications. The use of femtosecond combs for precision measurements is well covered and coherent control is presented with demonstrations for atomic, molecular and electronic processes. Nonlinear optical methods, including novel geometries of photon and vibrational echoes, are described for the investigation of molecular systems, in particular dye molecules, hydrogen-bonded networks, semiconductor quantum dots, and biomolecules. Measurements of ultrashort pulses, time-resolved reflection and transmission methods, and real-time spectroscopy with sub-5-femtosecond visible pulses provide the means for exploring new regimes and resolutions.

This book in the series on *Progress in Lasers* gives an exposé of some current and exciting research areas in the technology of pulse generation and in the applications of femtoscience.

Ahmed Zewail California Institute of Technology Pasadena, California May 2004

Preface

When I was first approached to edit a volume on *Femtosecond Laser Spectroscopy* in 2000, I did not anticipate that the field was about to explode, with the announcement of a series of remarkable new developments and advances. This volume describes these recent developments in eleven chapters written by leading international researchers in the field. It includes sections on:

- Femtosecond optical frequency combs, which are currently revolutionising ultrahigh precision spectroscopy and optical frequency metrology;
- Soft X-ray femtosecond laser sources, which promise to have important applications in biomedical imaging;
- Attosecond laser sources, which will provide the next generation of sources to study ultrafast phenomena such as electron dynamics;
- Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light;
- Coherent control of atomic, molecular and electron dynamics with tailored femtosecond laser pulses;
- Real-time Spectroscopy of molecular vibrations with sub-5-fs pulses; and
- Multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics.

Indeed, it is gratifying to see that with the recent advent of attosecond laser sources the title of this volume may soon be rendered obsolete.

I would like to thank each of the contributors for their cooperation in preparing this volume, and Ahmed Zewail for writing the Foreword. I appreciate the amount of work that goes into writing chapters of this type when the authors are heavily burdened with other demands on their time. I

feel honoured and privileged to have been associated with such an eminent group of researchers. I also thank my co-workers in the Ultrafast Spectroscopy group at Swinburne University of Technology – Lap Van Dao, Martin Lowe, Craig Lincoln, Shannon Whitlock, Xiaoming Wen, Tra My Do, Petrissa Eckle and David McDonald – for their help and encouragement during the preparation of this volume and for critical reading of some of the chapters. I thank Tien Kieu, Grainne Duffy and David Lau for their assistance with the preparation of the camera-ready chapters, and Gustav Gerber for kindly allowing the use of Figure 9-12 on the front cover of this volume. Finally, I thank the publishers of the following journals and books for permission to reproduce material in this volume: Applied Physics B, Applied Physics Letters, Journal of Chemical Physics, Journal of Physics B, Laser Spectroscopy Proceedings, Nature, Optics Express, Optics Letters, Optical Review, Review of Scientific Instruments, Physical Review Letters, Physical Review A, and SPIE Proceedings.

> Peter Hannaford Swinburne University of Technology Melbourne, June 2004

文档篇幅过长,请跳转百度云盘下载: 链接 : https://pan.baidu.com/s/1QpDuwg_Hbc6lEN_t7sJVeA 提取码 : dczg

