

分布式反馈激光 二极管手册

GEERT MORTHIER • PATRICK VANKWIKELBERGE

HANDBOOK OF Distributed Feedback Laser Diodes

SECOND EDITION

GEERT MORTHIER • PATRICK VANKWIKELBERGE

版权免责声明

本文集内容均来源于网络,版权归著作方所有。广州基座光学科技有限 公司仅做搜集整理工作,并供读者学习参考用途。在使用本文集内容时可能 造成实际或预期的损失,读者转载时破坏电子文档的完整性,或以商业盈利 目的复制和销售等行为,本公司概不承担任何责任。若原文版权方有异议, 请联系我们删除。

Handbook of Distributed Feedback Laser Diodes

Second Edition

Geert Morthier Patrick Vankwikelberge

Seabt 基座光学

《基座光学专业文集--激光篇》 www.oeabl.com [版权属于著作方,如有投权调取系kent@oeabl.com删除]

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN-13: 978-1-60807-701-4

Cover design by Vicki Kane

© 2013 ARTECH HOUSE 685 Canton Street Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

Contents

	Preface	xv
1	Introduction to Fabry-Perot and Distributed Feedback Laser Diodes	1
1.1	Historical Background	2
1.2	Laser Diode Device Structure	5
1.3	Operation of the Laser Diode	10
1.3.1	The Basic Concept of Fabry-Perot Laser Diodes	10
1.3.2	Optical Material Parameters	13
1.3.3	Thermal Aspects of Laser Diodes	14
1.4	Essential Laser Diode Characteristics	16
1.4.1	Static Characteristics	16
1.4.2	Dynamic Characteristics	18
1.5	Use of Laser Diodes in Optical Communications	
	Systems	20
1.6	Dynamic Single-Mode Laser Diodes	22
1.6.1	Short-Cavity Lasers	23
1.6.2	Coupled-Cavity Lasers	23
1.6.3	Injection-Locked Lasers	24
1.6.4	Laser Diodes with Distributed Optical Feedback	25

1.7	Organization of This Book	28
2	Rate Equation Theory of Laser Diodes	31
2.1	Introduction	31
2.2	Carrier Density Rate Equation	32
2.3	Photon Density Rate Equation	34
2.4	Phase Equations	35
2.5	Introducing Noise in the Rate Equations	36
2.6	Optical Gain and Absorption	39
2.6.1	Bulk Materials	41
2.6.2	Quantum Wells	42
2.6.3	Strained Layer Quantum Wells	45
2.6.4	Gain Suppression	45
2.7	Some Well-Known Solutions of the Rate Equations	48
2.7.1	The Static Side Mode Suppression	48
2.7.2	The FM and AM Behavior	50
2.7.3	Harmonic Distortion Characteristics	53
2.7.4	Large Signal Characteristics	54
2.7.5	The Power Spectrum, the Linewidth, and the Intensity Noise	58
2.8	The Influence of External Reflections	61
2.9	Summary	65
3	Coupled-Mode Theory of DFB Laser Diodes	69
3.1	The Physical Processes Inside a Laser Diode	70
3.1.1	The Electrical Process: Electrical Carrier Transport	70
3.1.2	The Electro-Optic Process: The Carrier-Photon	
	Interactions	71
3.1.3	The Optical Process: Optical Wave Propagation	71
3.1.4	The Thermal Process: Heat Transport	72

3.2	The Need for Simplification	72
3.3	Assumptions about the Modeled Laser Structure	73
3.4	Optical Wave Propagation	74
3.4.1	Description of the Optical Field	74
3.4.2	The Scalar Wave Equation	77
3.4.3	The Langevin Force	78
3.4.4	Reduction Toward the Coupled-Wave Equations	79
3.5	Discussion of the Coupled-Mode Wave Equations	84
3.5.1	The Bragg and Maximum Gain Wavelengths	84
3.5.2	Influence of Radiation Modes in Higher Order Gratings	85
3.5.3	Longitudinal Rate Equations for the Optical Field	88
3.5.4	The Instantaneous Optical Frequencies	89
3.5.5	Comments on Spontaneous Emission	90
3.6	The Electrical Transport Problem	92
3.6.1	The Carrier Rate Equation	92
3.6.2	Current or Voltage Drive of the Laser	94
3.7	The Standing-Wave Effect in Gain-Coupled Lasers	95
3.8	Boundary Conditions	97
4	Applying the Coupled Mode Theory	101
4.1	Introduction	101
4.2	Threshold Solutions for Simple DFB Lasers	102
4.2.1	AR-Coated DFB Lasers	103
4.2.2	The Stopband or Energy Gap	108
4.2.3	DFB Lasers with Reflecting Facets	109
4.2.4	The λ /4 Phase-Shifted DFB Laser	111
4.2.5	Second Order Index Coupled DFB Lasers	112
4.3	Numerical Solutions of the Coupled Mode Model	115
	Seabt 基座光学	
	WILL NOT STATE AND	

4.4	The Narrowband Approach for Solving the	
	Coupled Mode Model	116
4.4.1	Threshold Analysis	118
4.4.2	The Continuous Wave Analysis	120
4.4.3	Small Signal Dynamic Analysis	121
4.4.4	Noise Analysis	123
4.4.5	Large Signal Dynamic Analysis	124
4.5	The Broadband Approach for Solving the Coupled Mode Model	124
4.6	Coupling Coefficients for DFB Lasers	125
4.7	Derivation of the Rate Equations for DFB	
	Lasers	127
4.8	Longitudinal Spatial Hole Burning	131
5	A Closer Look at the Carrier Injection	135
5.1	Introduction	135
5.2	Heterojunctions and Semi-Insulating Materials	136
5.2.1	Heterojunctions	136
5.2.2	Semi-Insulating InP	142
5.3	Carrier Leakage Over Heterobarriers	144
5.4	Carrier Injection in Gain-Guided and Weakly Index-Guided Lasers	147
5.5	Lateral Current Leakage in Index-Guided Structures	149
5.6	Parasitic Elements	154
5.7	Microwave Effects	158
5.8	Circuit Modeling of Leakage and Parasitic Elements	159
5.9		

The Spectrum of DFB Laser Diodes	163
Amplified Spontaneous Emission	164
Side-Mode Rejection and Yield of DFB Lasers	172
Degradation of the SMSR by Spatial Hole Burning	175
DFB Lasers with Reduced Spatial Hole Burning	184
Nonuniform Injection	184
Special Index-Coupled Structures	185
Gain-Coupled Lasers	190
Measurement of the ASE Spectrum of DFB Lasers	193
Extraction of Device Parameters from the Spectrum	196
The IM and FM Behavior of DFB Laser Diodes	201
Measuring the IM Response of Laser Diodes	202
Measuring the FM Response of Laser Diodes	203
FM Measurements Based on Fabry-Perot	
Interferometers	203
The Gated, Delayed Self-Homodyne Technique Characterization of Laser Chirp Using Fiber	205
Dispersion	206
The IM Response	207
The Subgigahertz IM Response	208
The Spatial Hole Burning Cutoff Frequency	210
The High-Frequency (>GHz) IM Response	211
The FM Response	213
The FM Response of Fabry-Perot Lasers	213
The FM Response of DFB Lasers	216
The FM Response from the DFB Laser Rate	
Equations	226
Lateral Spatial Hole Burning	227
	Amplified Spontaneous Emission Side-Mode Rejection and Yield of DFB Lasers Degradation of the SMSR by Spatial Hole Burning DFB Lasers with Reduced Spatial Hole Burning Nonuniform Injection Special Index-Coupled Structures Gain-Coupled Lasers Measurement of the ASE Spectrum of DFB Lasers Extraction of Device Parameters from the Spectrum The IM and FM Behavior of DFB Laser Diodes Measuring the IM Response of Laser Diodes Measuring the FM Response of Laser Diodes FM Measurements Based on Fabry-Perot Interferometers The Gated, Delayed Self-Homodyne Technique Characterization of Laser Chirp Using Fiber Dispersion The IM Response The Subgigahertz IM Response The Subgigahertz IM Response The Spatial Hole Burning Cutoff Frequency The High-Frequency (>GHz) IM Response The FM Response The FM Response of Fabry-Perot Lasers The FM Response of DFB Lasers The FM Response from the DFB Laser Rate Equations

7.6	Dynamics of Quantum-Well Lasers	228
7.7	The Detuned Loading Effect	231
7.8	Extension of the Modulation Bandwidth by Making use of a Photon-Photon Resonance	232
7.9	Designing High-Speed DFB Lasers	234
8	Harmonic and Intermodulation Distortion in DFB Laser Diodes	237
8.1	Introduction	237
8.2	Measuring the Harmonic Distortion	238
8.3	Influence of the Relaxation Oscillations	239
8.4	Influence of Gain Suppression	243
8.5	Influence of the Spatial Hole Burning	245
8.6	Influence of Leakage Currents	255
8.7	Dips in the Bias and Frequency Dependence of the Distortion	258
8.8	Relation with CSO and CTB	259
8.9	Designing Highly Linear DFB Lasers	264
9	Noise Characteristics of DFB Laser Diodes	271
9.1	Measuring Noise Characteristics	272
9.2	FM Noise in DFB Lasers	274
9.2.1	Frequency Dependence of the FM Noise Spectrum	274
9.2.2	Methods for Calculating the FM Noise of Complex Laser Structures	276
9.3	Linewidth of DFB Lasers	279
9.4	Causes of Linewidth Rebroadening in DFB Lasers	282
9.4.1	The Presence of Side Modes	282
9.4.2	Gain Suppression	285
	Seabt 基座光学	

《基座光学专业文集--激光篇》 www.oeabt.com [版权属于著作方、如有侵权清联系kent@oeabt.com删除]

	Contents	xiii
9.4.3	Dispersion in the Feedback	287
	*	
9.5 9.5.1	Relative Intensity Noise of DFB Lasers Frequency Dependence of the RIN in	290
),),1	Single-Mode Lasers	291
9.5.2	Factors Determining the Low-Frequency RIN	292
9.6	Designing Highly Coherent DFB Lasers	294
9.7	Summary	296
10	Wavelength Tunable DFB Laser Diodes	301
10.1	Thermally Tunable Single Section DFB Lasers and DFB Arrays	302
10.2	Electronically Tunable Single-Section DFB	
	Lasers	303
10.3	Widely Tunable DFB Lasers	307
10.4	Thermally Widely Tunable DFB Lasers	308
10.5	Electronically Widely Tunable DFB Lasers	310
10.6	The Linewidth of Tunable DFB Lasers	311
10.6.1	Electronically Tuned TTG Lasers	312
10.6.2	Thermally Tuned DFB Lasers: Influence of Thermal Noise	313
10.7	Maximizing the Tuning Range of Widely Tunable DFB Lasers	314
11	Bistable and Self-Pulsating DFB Laser Diodes	317
11.1	Bistability in DFB Laser Diodes	318
11.2	Exploitation in All-Optical Flip-Flops	323
11.3	Exploitation in All-Optical Signal Regeneration	325
11.4	Unstable, Self-Pulsating DFB Laser Diodes	329
11.5	Clock Extraction Using Self-Pulsating DFB Laser Diodes	331
	Seabt 基座光学	

11.6	The Future of All-Optical Signal Processing	332
12	Fabrication and Packaging of DFB Laser Diodes	335
12.1	Laser Diode Fabrication Techniques	336
12.1.1	Liquid-Phase Epitaxy	336
12.1.2	Molecular Beam Epitaxy	338
12.1.3	Metal-Organic Vapor-Phase Epitaxy	339
12.2	Grating Fabrication Techniques	340
12.3	Packaging of DFB Laser Diodes	342
12.3.1	Electrical Aspects	343
12.3.2	Optical Aspects	344
13	Epilogue	351
13.1	DFB Lasers in Optical Communications	351
13.2	Other Applications of DFB Lasers	352
13.3	Materials and Fabrication	354
	dix A Noise, Auto-Correlations, pectral Densities	355
Appen	dix B Derivation of (9.13) from (4.41)	359
About	the Authors	361
Index		363

Preface

Since the first edition of this book in 1997, the photonics landscape has evolved considerably and so has the role of DFB laser diodes. Although tunable laser diodes are introduced ever more in advanced optical communication systems, DFB laser diodes are still widely applied in many deployed systems. This also includes wavelength tunable DFB laser diodes and DFB laser diode arrays, usually integrated with intensity or phase modulators and semiconductor optical amplifiers. It is moreover expected that, in the near future, optical communication will find its way in short distance interconnections between or inside computers, and that silicon photonics will be the preferred technology for such interconnections. DFB lasers in InP heterogeneously integrated on silicon-on-insulator waveguide circuits are being investigated as transmitters for optical interconnects.

This book is intended to give a comprehensive description of the different effects that determine the behavior of a DFB laser diode. Emphasis is on developing a detailed understanding of DFB lasers and on the derivation of guidelines for their design. To this end, Chapters 1–4 deal with the device physics and how they can be modeled. Both a lumped rate equation model and a longitudinal coupled-wave equation model are presented. The design is covered in Chapters 5–9, wherein the different aspects of the laser performance (i.e., current injection efficiency, spectral stability, dynamic behavior, nonlinear distortion, and noise characteristics) are subsequently discussed. These chapters contain a large number of illustrations, and have been written with the aim of providing clear explanations. Chapters 10 and 11, which are new in this second edition, discuss wavelength tunable DFB lasers and bistable and self-pulsating DFB lasers, respectively. Wavelength tunable DFB lasers are gaining importance with the evolution towards coherent communications, but are also important in future optical sensing systems. Bistable and self-pulsating DFB lasers can be applied in more advanced applications, such as optical logic, optical signal regeneration, and clock extraction. Chapter 12 discusses the fabrication and packaging of DFB laser diodes, while the epilogue gives an updated outlook on future DFB laser devices and future applications. Although this book is focused on DFB lasers, much of the material is directly applicable to Fabry-Perot lasers.

This book should therefore be of interest to researchers, engineers, and students in device fabrication and design, optical-fiber communications, and any other field wherein DFB laser diodes are used. Any person with a reasonable background in semiconductor and electromagnetic theory should be able to follow the text easily.

Most of the authors' knowledge and understanding about this topic is the result of several years of research at the Department of Information Technology of Ghent University. It is therefore our great pleasure to acknowledge Prof. Paul Lagasse, who has been director of this department for over twenty years, and Prof. Roel Baets, who has headed the Photonics Research Group for over twenty years, for providing all the necessary means and opportunities for doing this research. We owe them much for the opportunities to collaborate and interact with many other researchers, both at the department and at several internationally recognized industrial and academic laboratories. It would be an impossible task to list all of the individuals with whom we had stimulating discussions or interesting collaborations and who thus contributed to our own work. Early collaborators-such as Jens Buus, Bart Verbeek, Piet Kuindersma, Chris Park, and Richard Ash, Francois Brillouet, Jean-Luc Bevlat, Richard Schatz, and Yoshiaki Nakano—have certainly impacted our work and therefore this book. Chapters 10 and 11, which are based on more recent research, has benefitted from collaborations with Markus-Christian Amann, Ralf Meier, and Rene Todt from the Walter-Schottky Institut in Munich (Rene Todt is now at Oclaro) and from the work of Dr. Morthier's former Ph.D. student, Koen Huybrechts.

We finally wish to thank our family and friends for moral support and for taking care of our extra-professional and social needs.

Second 基座光学
《基座光学专业文集--激光篇》
WWW.0eabt.com [版权属于著作方,如有侵权崩联系kent@oeabt.comlliki]

文档篇幅过长,请跳转百度云盘下载: 链接https://pan.baidu.com/s/1pLg8dB61xMCt_9zCkw44Sg 提取码:iwxh

